
CS 4850 - Fall 2024

SP-14 GREEN - Novel Chess Game

Group Members:

Joshua Peeples, Matthew Corvacchioli, Allen Smith, Dylan Luong, Ashton Miller

Professor and Date:

Sharon Perry – December 2nd, 2024

Project Website:

https://sp-14-green.tiiny.site/

GitHub Repository:

https://github.com/S-14Chess-p/Senior-Project-ChessAI

General Project Stats:

Total Lines of Code: Placeholder

Number of Project Components and Tools: 2

Total Man Hours: 425

Table of Contents
Introduction ... 4

2.0 Requirements Introduction .. 5

2.1 Overview... 5

2.2 Project Goals .. 5

2.3 Definitions .. 5

3.0 Functional Requirements ... 5

3.1 Overview... 5

3.2 Chess Game Modes ... 6

3.3 Chess Game Pieces.. 6

3.4 Game Rule.. 8

3.5 Board Layout .. 10

3.6 Chess Game Play.. 11

Analysis ... 12

4. Design Introduction .. 12

5. Design Considerations.. 13

5.1 Design Overview ... 13

5.2 Design Constraints.. 13

5.3 Development Methods ... 14

6. Architectural Strategies .. 14

7. System Architecture ... 15

8. Detailed System Design .. 16

8.1 Classification .. 16

8.2 Definition ... 16

8.3 Constraints ... 16

8.4 Interface/Exports .. 16

9. External Interface Requirements .. 17

9.1 User Interface Requirements .. 17

9.2 Hardware Interface Requirements .. 17

10.0 Development.. 18

10.1 UI.. 18

10.2 Pieces – Rules... 19

10.3 Modes of play ... 21

10.4 Algorithms .. 21

10.5 Setting it up .. 22

11.0 Test... 23

11.1 Test Plan ... 23

11.2 Test Report ... 24

Version Control .. 25

Conclusion/Summary .. 25

References... 26

Appendix .. 27

Introduction

2.0 Requirements Introduction

2.1 Overview

The Software Requirements Document (SRS) highlights the functional, design, and performance
requirements of the project. The SRS contains important information regarding the performance
and design constraints of the project, which will be followed closely to ensure the project remains
on track. The SRS also briefly touches on the UI/UX of the project so that we have a guideline to
follow.

2.2 Project Goals

1. Develop the game chess using the programming language C#

2. Create an AI that knows how to play the game but is not trained well, it will always win.

3. If there is time, add difficulty selecting options for the AI.

4. If necessary, create alternate game modes

2.3 Definitions

Artificial Intelligence (AI): In the context of this document, AI refers to the entity that controls the
side not chosen by the player and makes moves in adaptation to those taken by the player.

Graphics User Interface (GUI): How the user will interface with the program in an easily accessible
manner.

3.0 Functional Requirements

3.1 Overview
Like all html projects this program will be able to run in a browser. The user will be presented with 3
pages labeled Home, Rules, and Play. The home page will give an overview of the project. The rules
page will present the user with a read-only version of the ruleset. The play page will have three
options: Online Player vs Player, Local Player vs player, and Player vs AI. Each of them will do exactly

what they sound like they do. Player vs Player will allow 2 players to play against each other locally
on the same device or online using a room code. Player vs AI will allow a Single player to select an
AI model to play against.

3.2 Chess Game Modes

The chess game has different modes of play, and the modes are:

3.2.1 Player vs Player

Player vs Player (PVP): When two human players compete against each other in the game of chess.

3.2.2 Player vs Environment

Player vs Environment (PVE): When a human player competes against an AI in the game of chess.

3.3 Chess Game Pieces

In the chess game, there are 6 different types of pieces that can be moved.

On game start, each player starts with a certain number of pieces on the board:

• Eight Pawns
• Two Knights
• Two Rooks
• Two Bishops
• One Queen
• One King

Each piece has a certain number of values called points, and some pieces are worth more points
than others. Players use a system that keeps track of the chess pieces’ worth.

3.3.1 Pawn (1 point)

The Pawn is the most basic piece and the least powerful piece in the game. Each side starts with
eight pawns, and they all start at the second row (or ranks) from the player’s side. If it is a pawn’s
first move, it can move forward one or two squares, but if a pawn has already moved, then it can
move forward one square at a time. A pawn threatens or captures the opponent’s piece diagonally.

A pawn has a special move when it encounters the opponent’s pawn’s first move known as the En
Passant. See 3.4.14 for more details on En Passant.

3.3.2 Bishop (3 points)

Bishops can move diagonally in any number of unoccupied spaces, if it is not blocked by its own
pieces. An easy way to remember how the bishop can move is it moves like an “X” shape. The
bishop can capture an opponent’s piece by moving to the occupied square where the piece is on.
Each bishop starts on a colored square and can only move on that type of square for the rest of the
game.

3.3.3 Knight (3 points)

Knight can move two spaces in a cardinal direction, then 1 space in a left or right manner, OR it can
move one space in a cardinal direction, then two spaces in a left or right manner. An easy way to
remember how the knight can move is it moves in an “L-shape.” Knight is the only piece that can
move over other pieces, whether ally or enemy. Knight can capture the enemy pieces only where it
lands on, not what it jumps over. Since knight can jump over pieces, it is the only piece that can be
moved in the first 2 turns of the game along with the pawn. Knights start between the Bishops and
Rooks

3.3.4 Rook (5 points)

Rook is a powerful, major piece that can move any number of unoccupied spaces in the cardinal
directions (if it isn’t blocked by other pieces). An easy way to remember how a rook moves is that it
moves like a “+” sign. The rook can capture an enemy piece in their direction. Rook starts in both
corners of the player’s side. Rooks are powerful pieces whose main weakness is their lack of early
game mobility, as it is a weak move to move the pawns that block the Rooks early in the game.
Rooks typically take multiple moves to get into relevant play. Rooks are unique in that they can
perform the Castle maneuver along with the King. See 3.4.17 for more details on Castling.

3.3.5 Queen (9 points)

Queen is the most powerful, major piece in chess. The queen has the movement properties of the
Bishop and Rook combined. The queen can move horizontally, vertically, or diagonally in any
number of squares. The Queen can capture any square it can move to. With proper positioning, it
can threaten or capture any pieces without retaliation.

3.3.6 King (infinitely valuable)

The King is the most important piece in chess. Like the Queen, the King can move in any direction
except it can only move 1 space at a time. The king cannot move into any threatened squares, and
when the King is in check, no other moves can be taken unless it brings the King out of check
(whether by moving the King, blocking the threat with another piece, or by capturing the threatening
piece). As a result of this, the player’s and the opponent’s kings cannot threaten each other directly.
In traditional chess, the king cannot be captured. Instead, if the King were able to be captured after

a turn of check, a checkmate is declared. The king can perform the Castling maneuver with a rook.
See 3.4.17 for more details on Castling.

3.4 Game Rule

When and where a piece can move.

3.4.1 Capture

The term for when a piece takes another piece off the board.

3.4.2 Check

The term for when a King is threatened. When this occurs, the player controlling the threatened king
cannot make any moves that do not solve the threat. Valid options are to move the King, Block the
threat with another piece (which cannot be done against Knights), and to capture the opposing
piece. The king is allowed to capture pieces that threaten him if able, but only if they are not
protected by another piece.

3.4.3 Checkmate

The state of the game where a check would occur, but the player in check is not able to protect the
king in 1 move. The game is over at this point with the player in checkmate being the loser and the
one who put them in checkmate being the victor.

3.4.4 Draw by Consent

When neither player can claim victory, they can make the agreement of all players or occur due to a
stalemate.

3.4.5 Draw by Stalemate

A Draw forced upon the players due to the game state. Occurs when a King is NOT in Check, but no
other piece can be moved, and the King itself could only move into threatened squares. Some
rulesets declare this to be a victory for one player, generally either the one who has the most points
remaining or the one who forced the stalemate on another player.

3.4.6 Draw by Repetition

A Draw that can be claimed by either player when the same game state repeats 3 times in a row (i.e.
all pieces have been in their exact location at least 3 times in the game). The other player does not
have to consent to the draw.

3.4.7 Draw by Fifty-Move Rule

A Draw that can be claimed by either player which occurs when 2 criteria have been met:

1. A pawn has not been moved in 50 consecutive moves
2. A piece has not been captured for 50 Consecutive moves.

3.4.8 Threatened

The squares a piece could capture another one if they were to move.

3.4.9 Protected

When a piece is ‘Threatened’ by an ally piece, make sure that if the protected piece is captured the
protecting piece can retaliate.

3.4.10 Pin

Pin occurs when a less valuable piece is being threatened but cannot move without exposing the
more valuable piece behind it.

3.4.11 Skewer

Skewer occurs when a more valuable piece is being threatened but cannot move without exposing
the less valuable piece behind it.

3.4.12 Fork

Fork occurs when a single piece threatens two other pieces at the same time

3.4.13 Stuck piece

A piece that has no valid move.

3.4.14 En Passant

A special capture mechanic exclusive to pawns. To perform this capture, you must take your
opponent’s pawn as if it had moved just one square. You move your pawn diagonally to an adjacent
square, one rank farther from where it had been, on the same file where the enemy’s pawn is, and
remove the opponent’s pawn from the board.

There are a few requirements for this move to be legal:

1. The player’s pawn must advance exactly three squares (or ranks) to perform this move
2. The opponent’s pawn must move two squares in one move, landing right next to the player’s

pawn
3. The en passant capture must be performed on the turn immediately after the pawn being

captured moves. If the player does not perform en passant on that turn, they can no longer
do it on the next turn and the turn after.

3.4.15 Promotion

When a pawn reaches the opponent's back row, it can be turned into a major or minor piece.

3.4.16 Underpromotion

The term for when a pawn is promoted into a piece other than the queen. Done for strategic
purposes.

3.4.17 Castling

A maneuver where a King can move two squares to the left or right towards the chosen rook, and
the chosen rook jumps across to the other side of the king, all in one move.

This move can only be possible under these conditions:

1. Your king cannot have moved.

Once your king moves, you can no longer castle, even if you return the king to its starting
square.

2. Your rook can not have moved.

If you move your rook, you cannot castle on that side anymore, even if you return the rook to
its starting square
.

3. Your king cannot be in check.

You cannot castle while your king is threatened. Once you are out of check, you can castle.
Being checked does not remove the ability to castle later.

4. Your king can not pass through check

If any square the king moves onto would put the king in a threatened position, you cannot
castle. You will have to deal with the attacking piece first.

5. No pieces can be between the king and rook.

All the space between the king and rook must be empty. It is important to develop your
pieces into the game as soon as possible.

3.5 Board Layout
Chess is played on a board of 8 x 8 squares arranged in vertical rows called “files” and horizontal
rows called “ranks”. These squares alternate between two colors in a checkered pattern. Each

square is identified by its row and column coordinates. The files are listed from “a” to “h”, and the
ranks are listed from “1” to “8”.

It’s important to orient the board in the right direction, so the chess pieces for each side will be set
up correctly. The board should be positioned so that each player has a light-colored square in their
bottom-right corner.

Pawns are set up on the second row of the player’s side.

Rooks are placed in the corners.

Knights are placed next to the player’s rooks.

Bishops are placed next to the player’s knights.

The player’s queen should be placed on the same color square as her army. The white queen
should go on the light square and the black queen should go on the dark square.

Lastly, the king should be placed next to the queen.

3.6 Chess Game Play
The player opens the chess game and then the player is allowed to choose which color (black or
white) to choose. Once the player or both players choose their color, the board layout will be set up
with chess pieces on both sides, and both players are given a clock.

In chess, the player with the white pieces always moves first. Once the white piece player moves,
the turn is over for the white piece player, making them inactive at this point, and they can no longer
move. Then, the timer starts for the player with the black piece, and it becomes their turn to move.
Once the black piece player makes the move, their turn is over, and the timer pauses for the black
piece player, becoming inactive during the white piece player’s turn.

This gameplay will continue until the player checkmates the opponent’s king, it becomes
stalemate, meaning one player can no longer make action and neither side can win or make
progress, one player surrenders, or the timer runs out for one player, resulting in a loss and a win for
the other player.

Analysis

4. Design Introduction

The System Design Documents (SDD) describes how all the different parts identified in the
requirements document interact with each other at a high level. The SDD orchestrates our design
goals clearly and will provide an overview of the system architecture. Lastly, the SDD describes the
goals we had in mind when designing our product.

The SDD provides the development team guidance for how the system architecture and design
should be set up. The intent is to provide the development team with documentation to refer to
when they are stuck, as well as documentation to serve as a structural piece that helps with the
whole team's understanding of the architecture of the project. These documents are meant to be at
a high level and as such anyone other than those the SDD is meant for would have difficulty
understanding them. As the development period of the project continues, the team will grow much
more of a low-level understanding of the project's ins and outs based on the expansion of the high-
level knowledge from this document.

5. Design Considerations
5.1 Design Overview
C# will be the primary language used to code the logic behind our project.

Html files will be used to set up the user interface for our project. This HTML file will contain the
necessary CSS stylings for the front-end design that the project aims to meet spec-wise.

Windows will be the primary operating system used for this project.

The user will be utilizing our program to play and enjoy the game of chess either with a friend in the
player vs player mode or against a trained AI that we have programmed to learn the game to a
playable metric.

5.2 Design Constraints

C# is server-side and as such is unable to run in a browser with an html file like a language like
JavaScript would be able to, so we will use ASP.net framework that allows us to bypass this issue.

5.2.1 Environment

We have set our own small list of constraints

• C# will be used to program the logic
• Html will be used to program the UI
• C# is server-side so it can’t directly run in a browser to work with an html file, so we will use

the ASP.net framework to bypass this issue.
5.2.2 User Characteristics

Each user needs a mouse to play our game. When the user clicks on a piece it will highlight every
valid move that piece can make the user can then click on the highlighted square to move that
piece or a different piece to show other possible moves.

5.2.3 System

Windows 10 Operating System (OS). Internet connection possibly required.

5.3 Development Methods

We will begin by developing the game of chess as everyone knows it in the player vs player form so
that we know our program works. Once complete, we will alter it to use our own custom ruleset still
focusing on the player vs player mode. Once we are happy with how that is functioning, we will
begin to develop player vs AI and hopefully have a fully fleshed out product by the end and expand
beyond that if we have the time to do so.

Since the beginning of the Project, we have opted out of including the tutorial and have instead
opted for a player versus player online mode where two players on separate computers and either
the same or separate network connections can play with one another.

6. Architectural Strategies

Our goal is to use the C# language for the overall design of the game and the functionality of the
games rules/AI as well as using HTML and CSS for the design of the frontend for our user interface.
The IDE of choice will be Microsoft Visual Studio through our KSU accounts.

We currently do not have any plans to reuse any existing software components and plan to rely fully
on our own developed software, outside of using a webpage template that visual studio provides.

From the development phase of the project, we began the implementation phase. Once
implemented, numerous testing methods were utilized to make sure that the program ran
according to our design and how we saw fit. During the testing phase we took adequate measures
to make sure the program was polished before the final submission.

The main paradigm that we aimed to focus on is the Graphical User Interface that will be utilized for
the front end of the project where we will have a home screen, which will have 3 buttons upon a
toolbar for navigation. The first screen (the launch screen) will be a home screen providing a generic
overview of the project. The second screen navigates the user to a page that has a list of extensive
rules. The third page facilitates different versions of the game.

The first version of the game is a player vs player version of the game where two players can
simultaneously play against one another on the same device.

The second version of the game is a player vs AI version of the game where the user can play against
an AI that is engineered with different AI characteristics making each model a different experience.

Finally, the third version of the game is a player vs player online mode where two players can
connect with one another to enjoy the game on separate machines and Wi-Fi networks.

As mentioned before each of these modes will be readily accessible from the play screen that the
user can easily navigate to from the Home screen.

The programming language that we used to develop the program is the C# programming language.
Alongside C#, we intend to use the HTML markup language along with CSS styling to refine the
design of the programs front end. The ASP.net framework will be used to allow these two file types
to work with each other.

We will use the exception error handling method.

7. System Architecture
We hope for the system architecture to remain simplistic and will always be willing to expand it, if
necessary, but as it stands right now C# will be the primary back-end language responsible for
running the AI as well as the logic for detecting valid moves. That C# code will then need to run
through a web Framework that will allow it to communicate with an html file, which will be
responsible for the front-end UI as well as sending user input back to the C# program for detecting
valid moves.

Below, a system architecture design diagram can be found.

Figure 1: A system architecture design diagram that details the process from input, to the CPU contents, to output.

8. Detailed System Design

8.1 Classification

The Minimax algorithm will be used as the primary component behind the AI; it utilizes a heuristic to
make an informed decision on the best move available. This algorithm allows the programmer to
limit how far in advance The AI can look, lowering the capabilities of the AI so it does not make the
perfect move every time.

8.2 Definition

Minimax algorithm - Common in 2 player turn based games, the minimax algorithm represents the
game in a partial heuristic, which uses the current state of the board as the root. The algorithm
begins by generating all the possible moves for a defined depth which limits how far ahead the AI
can look. This depth value helps the performance of the AI and making the AI to not make the
perfect choice every time. Once the heuristic is fully generated, the AI uses some logic to determine
the best possible move with the generated move list.

8.3 Constraints

C# is server-side and therefore requires a framework to work with html. We will be using ASP.net to
handle this.

To keep the AI from slowing the game down we will have to test different depths within the minimax
algorithm to make an effective AI without hindering performance.

8.4 Interface/Exports

The set of services (resources, data, types, constants, subroutines, and exceptions) that are
provided by this component. The precise definition or declaration of each such element should be
present, along with comments or annotations describing the meanings of values, parameters, etc.

For each service element described, include (or provide a reference) in its discussion a description
of its important software component attributes (Classification, Definition, Responsibilities,
Constraints, Composition, Uses, Resources, Processing, and Interface).

9. External Interface Requirements
9.1 User Interface Requirements
Three pages labeled: Home, Rules, and Play. Home will give a general overview of the project. Rules
will give a non-visual written version of the ruleset. When the Play button is selected, the user is
presented with three options: Online Player vs Player, Local Player vs player, and Player vs AI. All
three will present the user with a chess board to play with the option they select changes how the
back end will function. Online Player vs Player will require a way to create a room code and a place
to enter a room code so someone can join it. Player vs Player and Player vs AI will each have a UI
element indicating to the user which mode has been selected, but there will be no additional UI
elements other than that.

9.2 Hardware Interface Requirements
9.2.1 Display Interface

A screen or monitor displays the game board, pieces, and user interface elements. At least a basic
LED display will suffice.

9.2.2 User Input Interface

A mouse and keyboard will be used to support the chess application on a computer. Input will be
through a mouse for selecting and moving pieces on the board, and a keyboard for entering
settings.

9.2.3 Battery

The hardware should have enough battery life to support the game.

9.2.4 Processing Hardware

Central Processing Unit (CPU), Graphics Processing Unit (GPU), and Memory are required to play
the game.

10.0 Development

10.1 UI
Designing an effective user interface was our top priority for creating effective chess AI. Logically,
we started by creating a representation of a chessboard using primarily HTML, though JavaScript
and CSS were also used. A Module 2 function is used to place the chessboard with differently
colored squares onto the UI. Our UI implementation has evolved significantly over the course of the
project.

To start, our UI was rather barebones, consisting of a home screen with our group with an option of
navigating to a few other pages consisting of a rules page and a play screen. On the play screen, an
active chessboard would be displayed with three buttons to choose between tutorial, PVP, and
PVAI. We would end up scrapping the tutorial later and replacing it with Online Player vs Player.

The next iteration of the UI introduced a more advanced layout, moving the page option buttons
from the previous version to a navigation bar. The pages were now more visually appealing, and this
version was initially light mode only. Throughout the semester, the idea of dark mode was
discussed and would later be implemented.

In this iteration, the chessboard was redesigned, and the game mode buttons were updated. The
color scheme was refined, with the board adopting a green tint and game mode buttons turned
blue. After finishing a game, a popup now replaces the individual Victory, Defeat, or Draw screens.

The third UI version is built on the previous design, with color updates and new features laying the
foundation for the final version. The board's colors shifted from green and beige to purple and deep

red, and the game mode buttons matched the board's purple for consistency. Buttons also gained
shadows, with selected options highlighted in deeper purple. A grey box at the top of the page
identified each game mode. The PvAI option allowed users to choose an AI opponent (Randy
Random) from a dropdown and start the game. Popup for results replaced dedicated victory
screens, and the dark mode checkbox was added as a first step toward full dark mode support.

In the final UI iteration, the home screen and the entire app were redesigned with a chessboard
background image. The dark mode was fully implemented, now applying across the entire app and
saving between pages. The play screen received the most updates: in dark mode, the board and
interface elements shifted to a red theme, with dark red squares, white and black pieces, and red
menus. The board also became rounded for a cleaner, more uniform design. In light mode, the
previous color scheme kept distinguishing the two themes.

Functionality improvements included new AI opponents (Minimax AI and SmartyAI), a turn
identifier, a resign feature for both PvP and PvAI modes, and a responsive design that allowed
elements to resize based on the window size, ensuring a consistent experience across different
screen sizes.

Chess game engine-The Chess game is built using three different C# files called Piece.cs, Game.cs,
and Board.cs. Each of them has their own responsibilities and must work together to allow
everything to function. Game.cs is responsible for keeping track of all the general rules of chess. It
has variables that keep track of who’s turn it is, whether the game is over or not, and the current
status (ongoing, checkmate, stalemate). Game.cs is also responsible for checking for stalemate
and checkmate after every move and handles most of the special case rules like En Passant and
Pawn Promotion. Game.cs also has a method that returns every valid move which is used a ton in
the AI models discussed later. Board.cs initializes the board as a 2d array and places each piece in
the correct initial position. After initialization it keeps track of where each piece is currently located
and has a few methods that help with some of the special case moves and rules. Piece.cs defines a
parent class that has a few variables to help determine which team the piece belongs to and its
position. Each piece type is defined as its own class that inherits from Piece Each class defines
movement logic and in the case of pawns there is a separate function to define capture logic and an
attribute to determine if the pawn is en Passant eligible. Rooks do not require additional capture
logic, but they have a similar attribute to determine if the rook is eligible for castling.

10.2 Pieces – Rules

Pawn: The most basic piece in chess. Each player has 8 of them, and they all start at the second
row from the player’s perspective. A Pawn can normally only move 1 square forward, but if it has not
been moved from its home row, it can instead optionally move 2 squares forward. A pawn threatens
its forward diagonal squares and can capture an enemy piece in these squares. Pawns cannot
move backward, nor can they move diagonally except to capture. Furthermore, Pawns can only
move 2 squares if they haven’t moved yet. A pawn that moves to squares and bypasses the threat
range of an enemy pawn can be captured by that pawn as if it moved only 1 square. See En Passant
for more details.

Bishop: Bishops can move any number of unoccupied spaces in a diagonal. The bishop’s threat
range is the same as its movement range. Each Bishop starts on a colored square and can only
move on that type of square for the rest of the game. Bishops are strongest in openings for claiming
the center board and during the late game where most other Pieces have been captured.

Knight: Knights move in an L shape, going 2 spaces in a cardinal direction and then 1 space in a
direction that forms an L. Knights are the only piece that can move over other pieces, whether ally
or enemy. Knights threaten the squares that they end their move on. Knights are the only pieces
other than pawns that can be moved in the first 2 turns of the game. Knights are also the only piece
that can threaten the Queen while not being threatened back. Knights start between the Bishops
and Rooks

Rook: Rooks are powerful pieces that can move any number of unoccupied spaces in the cardinal
directions. Rooks threaten any space they can move too. Rooks start at the farthest corners of the
board. Rooks are powerful pieces whose main weakness is their lack of early game mobility, as it is
a weak move to move the pawns that block the Rooks early in the game. Rooks typically take
multiple moves to get into relevant play. Rooks are unique in that they can perform the Castle
maneuver along with the King, see Castling for more detail.

Queen: Queens are the most powerful pieces in chess. A Queen has the movement properties of a
Bishop and Rook but cannot combine their movement in one turn. The Queen threatens any square
it can move to, and with proper positioning, can threaten any piece without retaliation. The Queen
is a powerful piece that is not to be squandered, but it is still ultimately expendable and is unlikely
to survive till the endgame during close games. Skilled players can offer up their queen in exchange
for potentially game winning momentum and board control. Queen trades are common
occurrences. The Queen starts adjacent to the King, on the square that is opposite their team
color.

King: The King is the most important piece in chess. Like the Queen, the King can move in any
direction, but unlike the Queen it can only move 1 space at a time. The king cannot move into any
threatened squares, and when the King is threatened no other moves can be taken unless it brings
the King out of threat (whether by moving the King, blocking the threat with another piece, or by
capturing the threatening piece). As a result of this, 2 kings cannot threaten each other directly. In
traditional chess, the King cannot be captured. Instead, if the King were able to be captured after a
turn of check, a checkmate is declared. The King can be one of the most powerful pieces on the
board come late game where most of the minor and major pieces have been expended. Kings can
perform the Castling maneuver with a valid rook.

Castling: Castling is the only move that allows you to move more than one piece in one turn. If the
king has not moved yet, and the rook the king is trying castle with has not moved yet, the king can
move 2 squares closer to the rook’s starting position and the rook will be moved to the other side of
the king. This maneuver is not available if any of the squares traversed by the king are under threat.

En Passant: En Passant is a special pawn capture in chess that occurs when a pawn moves forward
two squares as its first move and passes an adjacent opposing pawn. When this occurs, the
opposing pawn can capture the first pawn as if it only moved forward one square. This capture must
be made on the next move or the right to capture En Passant will be lost.

Stalemate: There are several forms of Stalemate. One of the most common occurs when one of the
kings is not directly under threat, and the player whose turn it currently is has no moves available.
Threefold – Repetition occurs when the same board state occurs three times. If each side only has
their king left it is also a stalemate due to insufficient material.

Checkmate: To win a game of chess you must put the opponent’s king in a position where it cannot
escape check in a single move resulting in a checkmate.

10.3 Modes of play
Player vs Player – For the player versus player mode, our group sought to provide a local experience
for two players of the game to interact on the same interface. This mode utilizes C#, HTML, and CSS
to provide structurally tact design and functionality. A key feature that was developed throughout
the semester was the feature to show potential moves that each user can make in their turns. Using
a combination of C# backend functions and HTML frontend interaction options, upon a selection of
a piece, as the user begins to drag the piece the board displays the options on each square that the
user can possibly move their piece.

Player vs Ai – Player vs AI functions by using one interface and one class. IAIplayer defines that
every class that inherits from it must have a getNextMove Function. The class AIfactory keeps track
of what AI is in use and assigns it to a team. This sounds simple on paper, but it has made
developing all of the different AI models so much easier, because we just duplicate the simplest,
change the decision-making logic, and it is ready to test.

10.4 Algorithms
10.4.1 RandyRandom

The primary goal was to use a simple move selection algorithm to ensure our framework to set up
the more advanced AI models were functioning. To fit these criteria, we utilized the random class
built into C# to select each move. This gave us a nice baseline to work with and when we want to
make a more advanced model, we just duplicate RandyRandom and add decision making logic.

10.4.2 SmartyAI

This was our attempt at making our own AI model that does not follow a preexisting algorithm.
SmartyAI gets every valid move on the board, it then simulates every move, runs the move through
the evaluation function and returns the move with what it deems to be the best outcome. The
evaluation function considers a few factors when evaluating a move. Firstly, each piece type has a
positional value for every square on the board. Secondly, each piece type has a weight that is only

added to the overall evaluation value if a piece of that type is captured. Furthermore, if a piece is
captured in a move but doing so results in the piece that was moved being threatened the weight of
the piece now under threat is subtracted from the total evaluation of the move. This allows the AI to
consider trades so if it can take the rook at the expense of its queen it will not make the move, but if
it can take a queen at the expense of a knight it will make that trade. Lastly, if there is a move
available for the AI that results in a checkmate it returns int.maxValue so that move is guaranteed to
be the one that is selected.

10.4.3 Minimax

The MiniMax algorithm is a common AI model used in several two player games. Smarty AI and
MiniMax both assign each piece type a weight and positional value, but the one used in MiniMax is a
much higher scale allowing for weights to be more specific. Where MiniMax separates itself from
Smarty AI is it can look at a specified number of moves in advance that can be altered simply by
changing a variable. All our AI models are designed to always play as black because it would require
a ton of restructuring to allow the player to choose. When it is black’s turn the AI will choose the
move that maximizes its evaluation score. When looking ahead the AI must predict the move that
white will make so it assumes white is playing optimally and goes down the path where white
makes the move that minimizes black’s odds to win. This algorithm is by far the most competent AI
model of the three we have developed, but because there are tons of moves being evaluated every
turn runtime can become a concern, so the minimax algorithm has Alpha-Beta Pruning to help with
this. This works by updating the values for a variable called alpha as the search is trying to maximize
and update the value of beta as the search tree is trying to minimize. If the value of beta ever
exceeds the value of alpha, we break out of that branch and avoid any further evaluation because
that move will not help the player.

10.5 Setting it up
Here is how to set up the Web Chess game:

1. On launch the program will send you to the Home page where you will see our names and a
navigation bar with options labeled: Home, Rules, and Play.

2. If you are unfamiliar with the rules of chess, click on the rules page to read up on them.
3. Once you feel comfortable with the rules, click on Play. You will be presented with an active

chessboard. This page defaults to local PvP, so you can play against your friends.
4. If you want to play against an AI, click the PvAI button on the right side of the board. This will

shift the board to an inactive state and ask you to select an AI. New UI will appear on the
right side of the board that contains a dropdown menu to select the AI model you want to
play against. Click Start Game to begin playing against the AI.

5. If at any point you feel like you are going to lose and want to restart, there is a Resign button
on the right side of the screen that will end the game.

11.0 Test

11.1 Test Plan

Test scenario: Chess page functionality

Requirement Pass Fail
Run in browser 10 0
Home page displayed 10 0
Rules page displayed 10 0
Chess board
displayed

10 0

Number of Chess
pieces correctly
displayed

10 0

Player vs Player
function

10 0

Player vs AI function 10 0
Resign function 10 0

Test scenario: Chess pieces functionality

Requirement Pass Fail
Pawn movement
function

10 0

Rook movement
function

10 0

Knight movement
function

10 0

Bishop movement
function

10 0

Queen movement
function

10 0

King movement
function

10 0

Castling function 5 0
En passant function 10 0
Capture function 10 0
Check function 10 0
Checkmate function 10 0
King pinned function 10 0
Promotion function 5 0

Test Scenario: AI plays

Requirement Pass Fail
Randy Random Runs 10 0
Smarty AI Runs 10 0
MiniMax Runs 10 0

11.2 Test Report
We ran each feature several times depending on how long it took to test, with 10 being the
highest we were willing to go. If anything went wrong, whether it was a crash or a bug it was
considered a failure, if no issues were found it was considered a pass. In the case of the AI
models, we considered it a pass if the AI played the game. We have been utilizing loggers
throughout the development of our project so that the program can tell us what it is
thinking as it runs and that has made keeping a low number of bugs easy.

We think these results really show how well our Chess engine is made. Whenever a major
bug or crash has appeared. We have worked to quickly resolve the issue. We had one major
bug appear that was causing captures to happen when they should not, but the issue was
quickly diagnosed to be caused by the stalemate logic and a fix was pushed out within the
week. We also found a crash that could occur in the minimax AI when it moved a piece near
the edge of the board. That one was more difficult to diagnose but once found a fix was
pushed immediately

Version Control

Conclusion/Summary

References

GeeksforGeeks. (2018, October 5). Minimax Algorithm in Game Theory | Set 1

(Introduction) - GeeksforGeeks. GeeksforGeeks.

https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-

introduction/

Appendix

